What's new

Reviewer Engineering formula sheet

Salamat. Yang basic formulas ay still helpful for general use as long as you know how to use them. Pero karamihan dyan ay basics na covered sa high school curriculum (from Science like Physics, Math subjects) na dapat ay nakabaon na sa utak natin he he, except for a few specific field of engineering formulas you may face if you're in an engineering class. Kung mag-board exam ka sa Civil Engineering, ito yung tanong na dapat mong pag-isipan.
(You do not have permission to view the full content of this post. Log in or register now.)

What are the subjects covered by the Civil Engineering Board Exam?​

The two-day examination is comprised of the following subjects with listed syllabi and their corresponding weight.

A. Mathematics and Surveying – 35%

Mathematics
1.0 Algebra
1.1 Set Theory
1.2 Real Numbers
1.3 Algebraic Expressions and Operations
1.4 Equations and Inequalities
1.5 Roots and Powers
1.6 Linear, Quadratic and Polynomial Functions
1.7 Factoring
1.8 Roots of Algebraic Equations
1.9 System of Equations
1.10 Logarithmic and Exponential Functions
1.11 Arithmetic and Geometric Progressions
2.0 Trigonometry
2.1 Circular (Trigonometric) Functions
2.2 Trigonometric Identities and Equations
2.3 Solution of Triangles
2.4 Hyperbolic Functions
3.0 Analytic Geometry
3.1 Cartesian Coordinate System
3.2 Functions and Relations
3.3 Functions and their Graphs
3.4 Straight lines
3.5 Conic Sections
3.6 Polar Coordinates
3.7 Transformation of Coordinates
3.8 Parametric Equations
4.0 Calculus
4.1 Differential Equations
4.1.1 Limits and Continuity
4.1.2 Derivatives and Differentiation
4.1.3 Application of Derivatives
4.1.4 The Differential
4.1.1 Limits and Continuity
4.1.2 Derivatives and Differentiation
4.1.3 Application of Derivatives
4.1.3 Application of Derivatives
4.1.4 The Differential
4.1.5 Partial Derivatives
4.2 Integral Calculus
4.2.1 Theory of Integrals
4.2.2 Integration Methods
4.2.3 Definite Integrals and Applications
4.2.4 Line and Surface Integrals
4.2.5 Multiple Integrals
5.0 Differential Equations
5.1 First Order Differential Equation
5.1.1 Exact Differential Equation
5.1.2 Integrating Factors**
5.1.3 Separable Variables
5.1.4 Homogeneous Differential Equations
5.1.5 Linear Differential Equations
5.1.6 Applications
5.2 Higher Order Differential Equations
6.0 Other Topics
6.1 Infinite Series
6.1.1 Molaurin Series
6.1.2 Taylor Series
6.1.3 Fourier Series
6.2 Complex Variables**
6.3 Vector Analysis
6.4 Matrices*
6.5 Determinants*
6.6 Probability and Statistics
7.0 Engineering Economy
7.1 Present Economy Study
7.2 Time-Value Relations
7.3 Selection Among Alternatives
7.3.1 Present Worth Method
7.3.2 Annual Worth Method
7.3.3 Future Worth Method
7.3.4 Internal Rate of Return Method
7.3.5 External Rate of Return Method
Surveying

1.0 Surveying Concepts
1.1 Uses of Surveys
1.2 Operations in Surveying
1.3 Measurement and Adjustments
1.4 Field and Office Work
1.5 Surveying Instruments
2.0 Basic Surveying Measurements
2.1 Distance Measurements
2.1.1 Pacing
2.1.2 Distance Measurement with Tape
2.2 Vertical Distance Measurement; Leveling
2.3 Angle and Direction Measurement
2.3.1 Location of Points
2.3.2 Meridians
2.3.3 Bearing and Azimuth
2.3.4 Magnetic Declination
2.3.5 Instruments Used
2.3.5.1 Engineers Transit
2.3.5.2 Theodolite
2.4 Stadia and Tacheometry
2.4.1 Principles of Stadia
2.4.2 Plane Table and Alidade
3.0 Survey Operations
3.1 Traverse
3.1.1 Deflection Angle Traverse
3.1.2 Interior Angle Traverse
3.1.3 Traverse by Angle to the Right
3.1.4 Azimuth Traverse
3.1.5 Compass Traverse
3.1.6 Stadia Traverse
3.1.7 Plane Table Traverse
3.2 Calculation of Areas of Land
3.2.1 Area by Triangle
3.2.2 Area by Coordinates
3.2.3 Area by Double Meridian Distance (DMD) and Latitude
3.2.4 Irregular Boundaries (Simpson’s and Trapezoidal Rules)
3.3 Triangulation and Tri-lateralization
3.3.1 Horizontal Control System
3.3.2 Triangulation Figures and Procedures
3.3.3 Error Propagation
3.3.4 Tri-lateralization
3.4 Astronomical Observation
3.4.1 Celestial Sphere
3.4.2 Equator System
3.4.3 The PZS Triangle
3.4.4 Azimuth and Hour Angle at Elongation
3.4.5 Time
3.4.6 Solar Observation
3.4.7 Stellar Observation
4.0 Engineering Surveys
4.1 Topographic Survey
4.1.1 Horizontal Control
4.1.2 Vertical Control (contours)
4.1.3 Location of Details
4.2 Route Surveying
4.2.1 Horizontal Curves
4.2.1.1 Simple Curves
4.2.1.2 Compound Curves
4.2.1.3 Super-relations
4.2.1.4 Spiral Curves
4.2.2 Vertical Curves
4.2.3 Earthwork Operations
4.2.3.1 Methods of Determining Earthwork Volumes
4.2.3.2 Borrow Pits
4.3 Hydrographic Surveys
4.3.1 Datum
4.3.2 Soundings
B.Hydraulics – 30%

1.0 Fluid Mechanics
1.1 Properties of Fluids
1.2 Fluid Statics
1.3 Fluid Flow Concepts and Basic Equations
1.4 Dimensionally Analysis and Dynamic Similitude
1.5 Viscous Flow and Fluid Resistance
1.6 Ideal Fluid Flow
1.7 Steady Flow in Closed Conduits
1.8 Steady Flow in Open Channels
2.0 Hydrology
2.1 Hydrologic Cycle
2.1.1 Precipitation
2.1.2 Streamflow
2.1.3 Evaporations
2.1.4 Transpiration
2.2 Hydrograph Analysis
2.2.1 Runoff
2.2.2 Storage Routing
2.3 Groundwater
3.0 Hydraulics, System and Structure
3.1 Reservoirs
3.2 Dams
3.3 Spillways, Gates, and Outlet Works
3.4 Open Channels
3.5 Pressure Conduits
3.6 Hydraulics Machinery
4.0 Irrigation, Flood Control and Drainage
4.1 Irrigation
4.1.1 Water Requirement
4.1.2 Soil-Water Relation
4.1.3 Water Quality
4.1.4 Methods
4.1.5 Structures
4.2 Flood Control
4.2.1 Design Flood

4.2.2 Flood Control Structures
4.3 Drainage
4.3.1 Estimate of Flow
4.3.2 Storm Drainage
4.3.3 Land and Highway Drainage
4.3.4 Culverts and Bridges
4.3.5 Drainage Structures
5.0 Water Supply and Sewerage
5.1 Fundamental Concept
5.1.1 Mathematics of Growth (Population Forecasting)
5.1.2 Environmental Chemistry
5.1.3 Mass and Energy Transfer
5.2 Water Supply and Treatment
5.2.1 Components of Water Supply System
5.2.1.1 Water Reservoir and Storage
5.2.1.2 Water Distribution System
5.2.1.3 Water Containment Structures
5.2.2 Water Consumptions Periods of Design
5.2.3 Pre-treatment Methods
5.2.4 Principles of Sedimentation
5.2.5 Sedimentation Tank Design
5.2.6 Coagulation-Sedimentation
5.2.7 Slow Sand Filtration
5.2.8 Rapid Sand Filtration
5.2.9 The Rapid Sand Filter
5.2.10 Underdrain System
5.2.11 Wash Troughs
5.2.12 The Washing Process
5.2.13 Clear Well and Plant Capacity
5.2.14 Water Disinfection
5.3 Waste Water Treatment
5.3.1 Quantity
5.3.2 Methods
5.3.3 Theory of Activated Sludge
5.3.4 Aeration Tank
5.3.5 Bio-kinetic Parameters*
5.3.6 Clarifiers
C. Design and Construction – 35%

1.0 Statics of Rigid Bodies
1.1 Force System
1.1.1 Concurrent and Non-current Force System
1.1.2 Parallel and Non-parallel Force System
1.1.3 Planar and Three Dimensional Force System
1.1.4 Distributed Forces
1.1.5 Frictional Forces
1.2 Equilibrium of Forces
1.2.1 Reactions
1.2.2 Free Body Diagram
1.2.3 Two Force Bodies
1.2.4 Three Force Bodies
1.3 Truss Analysis
1.3.1 Method of Joints
1.3.2 Method of Sections
1.3.3 Graphical Methods
1.4 Beams and Frames
1.4.1 Reactions
1.4.2 Shear Diagrams
1.4.3 Bending Moment Diagrams
1.5 Related Topics
1.5.1 Moment of Lines and Areas
1.5.2 Centroids
1.5.3 Moments of Inertia
1.5.4 Center of Mass
1.5.5 Center of Forces
2.0 Dynamics of Rigid Bodies
2.1 Kinematics of Particles
2.1.1 Rectilinear Motion
2.1.2 Curvilinear Motion
2.2 Kinetics of Particles
2.2.1 Newton's Second Law
2.2.2 Dynamic Equilibrium
2.2.3 Work and Energy Principle
2.2.4 Kinetic and Potential Energy
2.2.5 Impulse and Momentum Principle
2.3 Kinematics of Rigid Bodies
2.3.1 Translation
2.3.2 Rotation
2.3.3 General Plane Motion
2.4 Kinetics of Rigid Bodies
2.4.1 D'Alembert's Principle
2.4.2 Work and Energy Principle
2.4.3 Impulse and Momentum Principle
3.0 Mechanics
3.1 Stresses and Strains
3.2 Material Properties
3.3 Axially Loaded Members
3.4 Thin Walled Pressure Vessels
3.5 Torsional Stresses
3.6 Internal Forces and Stresses in Beams
3.6.1 Flexural Stress
3.6.2 Shear Stress
3.6.3 Combined Stresses
3.6.4 Principal Stresses
3.6.5 Unsysmetrical Banding
3.7 Deflections
3.7.1 Double Integration Methods
3.7.2 Area Moment Method
3.7.3 Conjugate Beam Method
3.8 Statistically Indetermine Beams
3.9 Shear Center
3.10 Curved Beams
3.11 Nonhomogenous Beams
3.12 Impact Loading
3.13 Stress Concentration
3.14 Repeated Loading
3.15 Elastic Instability (Buckling)
3.16 Analysis of Connections
3.16.1 Riveted and Bolted Connections
3.16.2 Welded
4.0 Structural Analysis
4.1 Loadings
4.1.1 Verical Loads (dead and live loads)
4.1.2 Lateral Loads (Wind and Earthquake Loads)
4.1.3 Impact Loads
4.2 Energy Methods for Deformation Analysis
4.2.1 Castigliano's Theorem
4.2.2 Virtual Work Method (Unit Load)
4.3 Influence Lines
4.4 Frame Analysis
4.4.1 Approximate Methods
4.4.2 Exact Methods*
4.4.3 Moment Distribution
4.5 Stiffness and Flexibility Methods of Analysis**

4.5.1 Trusses
4.5.2 Beams
4.5.3 Frames
5.0 Design of Timber Structures
5.1 Properties of Wood
5.2 Design of Tension Member
5.3 Design of Bending Members
5.3.1 Laterally Supported Beams
5.3.2 Laterally Unsupported Beams
5.4 Design of Compression Members
5.4.1 Short Columns
5.4.2 Slender Columns
5.4.3 Spaced Columns
5.5 Timber Connections
6.0 Design of Steel Structures
6.1 General
6.1.1 Properties of Structural Steel
6.1.2 Design Philosophy
6.1.2.1 Allowable Stress Design
6.1.2.2 Load and Resistance Factor Design
6.2 Tension Members
6.3 Connections
6.3.1 Bolted
6.3.2 Welded
6.4 Compression Members
6.5 Beams
6.5.1 Compact Sections
6.5.2 Non-compact Sections
6.6 Beam Columns
6.7 Plastic Analysis and Limit Design*
6.8 Composite Steel and Concrete
7.0 Reinforced Concrete Structures
7.1 General
7.1.1 Properties of Concrete Materials
7.1.2 Design Philosophies and Procedures
7.2 Flexural Analysis and Design
7.3 Shear and Diagonal Tension
7.4 Bond, Anchorage Development Lengths
7.5 Serviceability Requirements
7.5.1 ***** Control
7.5.2 Deflections
7.6 Columns
7.6.1 Short Columns
7.6.2 Slender Columns
7.7 Slabs
7.8 Footings
7.9 Retaining Wall
7.10 Pre-stressed Concrete
8.0 Soil Mechanics and Foundation
8.1 Soil Properties
8.2 Soil Classification
8.3 Flow of Water in Soils
8.3.1 Permeability
8.3.2 Seepage
8.3.3 Effective and Purewater Pressure
8.4 Soil Strength
8.4.1 Shear Strength
8.4.2 Bearing Capacity
8.5 Compressibility of Soils
8.5.1 Elastic Settlement
8.5.2 Consolidation Settlement
8.6 Soil Improvement
8.6.1 Compaction
8.6.2 Soil Stabilization
8.7 Earth Pressures and Retaining Wall
8.8 Slope Stability Analysis
9.0 Design of Civil Engineering Structures and Systems
9.1 Transportation Engineering**
9.1.1 Highway and Urban Transportation Planning and Economics**
9.1.2 Driver, Vehicle, Traffic and Road Characteristics**
9.1.3 Highway Design
9.1.4 Traffic Engineering and Highway Operations**
9.1.5 Road and Pavement Design
9.2 Airport Engineering**
9.3 Ports and Harbors
9.4 Containment Structures (Tanks, soils, storage tanks)
9.5 Bridges
10.0 Construction and Management
10.1 Engineering Relations and Ethics**
10.2 Contracts & Specifications
10.3 Construction Project Organization
10.4 Planning and Scheduling (PERT/CPM)
10.5 Construction Estimates
10.6 Construction Methods & Operations
10.7 Construction Equipment Operations and Maintenance
Ang dami nyan! And a general average of 70% with no grades lower than 50% in any given subject must be obtained by the candidate to pass the exam. Buti ngayon mababa kaysa noong araw na 75%.


Kaya sa Civil Engineering (as an example), mas may advantage to have a tailor-made sheet for it in addition from the one provide at yung extra knowledge pa sa other fields na requirement sa board exam. That is another thing you need to find for yourself. Hanap kayo ng magaling na review center - for the TIPS he he. And look for old reviewers online, o kaya hardbound/softbound books sa Morayta at Recto, National Bookstore atbp. Kung gusto mong pumasa, better get every available resources at huwag mag-intay ng milagro!

Yung sa baba is for "CE" only - may not be complete.

Civil Engineering All Formula book:

Spoiler contents are visible only to Established Members.


Bukod dyan, dito naman sa baba will cover the general subjects from the formulas above.
1. CPM-PERT : You do not have permission to view the full content of this post. Log in or register now. - You do not have permission to view the full content of this post. Log in or register now.
SOM : Strength of Materials
Theory of Structures
----------------------------------
2. RCC : Reinforced Concrete
-----------------------------------
3. Steel Structures
-----------------------------------
4. Soil Mechanics & Foundation Engineering
------------------------------------------------------------
5. Survey
----------------------------------
6. Fluid Mechanics & Hydraulic Machines
------------------------------------
7. Highway Engineering
Railway Engineering
----------------------------------------
8. Water Resources
-----------------------------------
9. Water Supply
------------------------------------------
10. Water and Wastewater quality



Downloads are here:
Spoiler contents are visible only to Established Members.
Spoiler contents are visible only to Established Members.


Kung may kulang dyan sa inyong present curriculum, kayo na lang yung magdagdag for additional input. Alam ninyo naman siguro yung curriculum ninyo he he - nasa transcript of records kung nakalimutan ninyo.


Visit this site for additional knowledge and backreading for your review. Might help.
You do not have permission to view the full content of this post. Log in or register now.
You do not have permission to view the full content of this post. Log in or register now.
You do not have permission to view the full content of this post. Log in or register now. - alisin ninyo yung "-"
You do not have permission to view the full content of this post. Log in or register now.

Ito yung sample questions for the board exams
You do not have permission to view the full content of this post. Log in or register now.

Kung handa na kayo, test ninyo ang inyong sarili online:
You do not have permission to view the full content of this post. Log in or register now.

Sa ibang field of engineering like ME, EE, ECE....ay may ibang requirements at formula sheets, pero sa general knowledge ay parehas lang silang lahat like General Information, Mathemathics and Science.
 
Last edited:
Salamat. Yang basic formulas ay still helpful for general use as long as you know how to use them. Pero karamihan dyan ay basics na covered sa high school curriculum (from Science like Physics, Math subjects) na dapat ay nakabaon na sa utak natin he he, except for a few specific field of engineering formulas you may face if you're in an engineering class. Kung mag-board exam ka sa Civil Engineering, ito yung tanong na dapat mong pag-isipan.
(You do not have permission to view the full content of this post. Log in or register now.)

What are the subjects covered by the Civil Engineering Board Exam?​

The two-day examination is comprised of the following subjects with listed syllabi and their corresponding weight.

A. Mathematics and Surveying – 35%

Mathematics
1.0 Algebra
1.1 Set Theory
1.2 Real Numbers
1.3 Algebraic Expressions and Operations
1.4 Equations and Inequalities
1.5 Roots and Powers
1.6 Linear, Quadratic and Polynomial Functions
1.7 Factoring
1.8 Roots of Algebraic Equations
1.9 System of Equations
1.10 Logarithmic and Exponential Functions
1.11 Arithmetic and Geometric Progressions
2.0 Trigonometry
2.1 Circular (Trigonometric) Functions
2.2 Trigonometric Identities and Equations
2.3 Solution of Triangles
2.4 Hyperbolic Functions
3.0 Analytic Geometry
3.1 Cartesian Coordinate System
3.2 Functions and Relations
3.3 Functions and their Graphs
3.4 Straight lines
3.5 Conic Sections
3.6 Polar Coordinates
3.7 Transformation of Coordinates
3.8 Parametric Equations
4.0 Calculus
4.1 Differential Equations
4.1.1 Limits and Continuity
4.1.2 Derivatives and Differentiation
4.1.3 Application of Derivatives
4.1.4 The Differential
4.1.1 Limits and Continuity
4.1.2 Derivatives and Differentiation
4.1.3 Application of Derivatives
4.1.3 Application of Derivatives
4.1.4 The Differential
4.1.5 Partial Derivatives
4.2 Integral Calculus
4.2.1 Theory of Integrals
4.2.2 Integration Methods
4.2.3 Definite Integrals and Applications
4.2.4 Line and Surface Integrals
4.2.5 Multiple Integrals
5.0 Differential Equations
5.1 First Order Differential Equation
5.1.1 Exact Differential Equation
5.1.2 Integrating Factors**
5.1.3 Separable Variables
5.1.4 Homogeneous Differential Equations
5.1.5 Linear Differential Equations
5.1.6 Applications
5.2 Higher Order Differential Equations
6.0 Other Topics
6.1 Infinite Series
6.1.1 Molaurin Series
6.1.2 Taylor Series
6.1.3 Fourier Series
6.2 Complex Variables**
6.3 Vector Analysis
6.4 Matrices*
6.5 Determinants*
6.6 Probability and Statistics
7.0 Engineering Economy
7.1 Present Economy Study
7.2 Time-Value Relations
7.3 Selection Among Alternatives
7.3.1 Present Worth Method
7.3.2 Annual Worth Method
7.3.3 Future Worth Method
7.3.4 Internal Rate of Return Method
7.3.5 External Rate of Return Method
Surveying

1.0 Surveying Concepts
1.1 Uses of Surveys
1.2 Operations in Surveying
1.3 Measurement and Adjustments
1.4 Field and Office Work
1.5 Surveying Instruments
2.0 Basic Surveying Measurements
2.1 Distance Measurements
2.1.1 Pacing
2.1.2 Distance Measurement with Tape
2.2 Vertical Distance Measurement; Leveling
2.3 Angle and Direction Measurement
2.3.1 Location of Points
2.3.2 Meridians
2.3.3 Bearing and Azimuth
2.3.4 Magnetic Declination
2.3.5 Instruments Used
2.3.5.1 Engineers Transit
2.3.5.2 Theodolite
2.4 Stadia and Tacheometry
2.4.1 Principles of Stadia
2.4.2 Plane Table and Alidade
3.0 Survey Operations
3.1 Traverse
3.1.1 Deflection Angle Traverse
3.1.2 Interior Angle Traverse
3.1.3 Traverse by Angle to the Right
3.1.4 Azimuth Traverse
3.1.5 Compass Traverse
3.1.6 Stadia Traverse
3.1.7 Plane Table Traverse
3.2 Calculation of Areas of Land
3.2.1 Area by Triangle
3.2.2 Area by Coordinates
3.2.3 Area by Double Meridian Distance (DMD) and Latitude
3.2.4 Irregular Boundaries (Simpson’s and Trapezoidal Rules)
3.3 Triangulation and Tri-lateralization
3.3.1 Horizontal Control System
3.3.2 Triangulation Figures and Procedures
3.3.3 Error Propagation
3.3.4 Tri-lateralization
3.4 Astronomical Observation
3.4.1 Celestial Sphere
3.4.2 Equator System
3.4.3 The PZS Triangle
3.4.4 Azimuth and Hour Angle at Elongation
3.4.5 Time
3.4.6 Solar Observation
3.4.7 Stellar Observation
4.0 Engineering Surveys
4.1 Topographic Survey
4.1.1 Horizontal Control
4.1.2 Vertical Control (contours)
4.1.3 Location of Details
4.2 Route Surveying
4.2.1 Horizontal Curves
4.2.1.1 Simple Curves
4.2.1.2 Compound Curves
4.2.1.3 Super-relations
4.2.1.4 Spiral Curves
4.2.2 Vertical Curves
4.2.3 Earthwork Operations
4.2.3.1 Methods of Determining Earthwork Volumes
4.2.3.2 Borrow Pits
4.3 Hydrographic Surveys
4.3.1 Datum
4.3.2 Soundings
B.Hydraulics – 30%

1.0 Fluid Mechanics
1.1 Properties of Fluids
1.2 Fluid Statics
1.3 Fluid Flow Concepts and Basic Equations
1.4 Dimensionally Analysis and Dynamic Similitude
1.5 Viscous Flow and Fluid Resistance
1.6 Ideal Fluid Flow
1.7 Steady Flow in Closed Conduits
1.8 Steady Flow in Open Channels
2.0 Hydrology
2.1 Hydrologic Cycle
2.1.1 Precipitation
2.1.2 Streamflow
2.1.3 Evaporations
2.1.4 Transpiration
2.2 Hydrograph Analysis
2.2.1 Runoff
2.2.2 Storage Routing
2.3 Groundwater
3.0 Hydraulics, System and Structure
3.1 Reservoirs
3.2 Dams
3.3 Spillways, Gates, and Outlet Works
3.4 Open Channels
3.5 Pressure Conduits
3.6 Hydraulics Machinery
4.0 Irrigation, Flood Control and Drainage
4.1 Irrigation
4.1.1 Water Requirement
4.1.2 Soil-Water Relation
4.1.3 Water Quality
4.1.4 Methods
4.1.5 Structures
4.2 Flood Control
4.2.1 Design Flood

4.2.2 Flood Control Structures
4.3 Drainage
4.3.1 Estimate of Flow
4.3.2 Storm Drainage
4.3.3 Land and Highway Drainage
4.3.4 Culverts and Bridges
4.3.5 Drainage Structures
5.0 Water Supply and Sewerage
5.1 Fundamental Concept
5.1.1 Mathematics of Growth (Population Forecasting)
5.1.2 Environmental Chemistry
5.1.3 Mass and Energy Transfer
5.2 Water Supply and Treatment
5.2.1 Components of Water Supply System
5.2.1.1 Water Reservoir and Storage
5.2.1.2 Water Distribution System
5.2.1.3 Water Containment Structures
5.2.2 Water Consumptions Periods of Design
5.2.3 Pre-treatment Methods
5.2.4 Principles of Sedimentation
5.2.5 Sedimentation Tank Design
5.2.6 Coagulation-Sedimentation
5.2.7 Slow Sand Filtration
5.2.8 Rapid Sand Filtration
5.2.9 The Rapid Sand Filter
5.2.10 Underdrain System
5.2.11 Wash Troughs
5.2.12 The Washing Process
5.2.13 Clear Well and Plant Capacity
5.2.14 Water Disinfection
5.3 Waste Water Treatment
5.3.1 Quantity
5.3.2 Methods
5.3.3 Theory of Activated Sludge
5.3.4 Aeration Tank
5.3.5 Bio-kinetic Parameters*
5.3.6 Clarifiers
C. Design and Construction – 35%

1.0 Statics of Rigid Bodies
1.1 Force System
1.1.1 Concurrent and Non-current Force System
1.1.2 Parallel and Non-parallel Force System
1.1.3 Planar and Three Dimensional Force System
1.1.4 Distributed Forces
1.1.5 Frictional Forces
1.2 Equilibrium of Forces
1.2.1 Reactions
1.2.2 Free Body Diagram
1.2.3 Two Force Bodies
1.2.4 Three Force Bodies
1.3 Truss Analysis
1.3.1 Method of Joints
1.3.2 Method of Sections
1.3.3 Graphical Methods
1.4 Beams and Frames
1.4.1 Reactions
1.4.2 Shear Diagrams
1.4.3 Bending Moment Diagrams
1.5 Related Topics
1.5.1 Moment of Lines and Areas
1.5.2 Centroids
1.5.3 Moments of Inertia
1.5.4 Center of Mass
1.5.5 Center of Forces
2.0 Dynamics of Rigid Bodies
2.1 Kinematics of Particles
2.1.1 Rectilinear Motion
2.1.2 Curvilinear Motion
2.2 Kinetics of Particles
2.2.1 Newton's Second Law
2.2.2 Dynamic Equilibrium
2.2.3 Work and Energy Principle
2.2.4 Kinetic and Potential Energy
2.2.5 Impulse and Momentum Principle
2.3 Kinematics of Rigid Bodies
2.3.1 Translation
2.3.2 Rotation
2.3.3 General Plane Motion
2.4 Kinetics of Rigid Bodies
2.4.1 D'Alembert's Principle
2.4.2 Work and Energy Principle
2.4.3 Impulse and Momentum Principle
3.0 Mechanics
3.1 Stresses and Strains
3.2 Material Properties
3.3 Axially Loaded Members
3.4 Thin Walled Pressure Vessels
3.5 Torsional Stresses
3.6 Internal Forces and Stresses in Beams
3.6.1 Flexural Stress
3.6.2 Shear Stress
3.6.3 Combined Stresses
3.6.4 Principal Stresses
3.6.5 Unsysmetrical Banding
3.7 Deflections
3.7.1 Double Integration Methods
3.7.2 Area Moment Method
3.7.3 Conjugate Beam Method
3.8 Statistically Indetermine Beams
3.9 Shear Center
3.10 Curved Beams
3.11 Nonhomogenous Beams
3.12 Impact Loading
3.13 Stress Concentration
3.14 Repeated Loading
3.15 Elastic Instability (Buckling)
3.16 Analysis of Connections
3.16.1 Riveted and Bolted Connections
3.16.2 Welded
4.0 Structural Analysis
4.1 Loadings
4.1.1 Verical Loads (dead and live loads)
4.1.2 Lateral Loads (Wind and Earthquake Loads)
4.1.3 Impact Loads
4.2 Energy Methods for Deformation Analysis
4.2.1 Castigliano's Theorem
4.2.2 Virtual Work Method (Unit Load)
4.3 Influence Lines
4.4 Frame Analysis
4.4.1 Approximate Methods
4.4.2 Exact Methods*
4.4.3 Moment Distribution
4.5 Stiffness and Flexibility Methods of Analysis**

4.5.1 Trusses
4.5.2 Beams
4.5.3 Frames
5.0 Design of Timber Structures
5.1 Properties of Wood
5.2 Design of Tension Member
5.3 Design of Bending Members
5.3.1 Laterally Supported Beams
5.3.2 Laterally Unsupported Beams
5.4 Design of Compression Members
5.4.1 Short Columns
5.4.2 Slender Columns
5.4.3 Spaced Columns
5.5 Timber Connections
6.0 Design of Steel Structures
6.1 General
6.1.1 Properties of Structural Steel
6.1.2 Design Philosophy
6.1.2.1 Allowable Stress Design
6.1.2.2 Load and Resistance Factor Design
6.2 Tension Members
6.3 Connections
6.3.1 Bolted
6.3.2 Welded
6.4 Compression Members
6.5 Beams
6.5.1 Compact Sections
6.5.2 Non-compact Sections
6.6 Beam Columns
6.7 Plastic Analysis and Limit Design*
6.8 Composite Steel and Concrete
7.0 Reinforced Concrete Structures
7.1 General
7.1.1 Properties of Concrete Materials
7.1.2 Design Philosophies and Procedures
7.2 Flexural Analysis and Design
7.3 Shear and Diagonal Tension
7.4 Bond, Anchorage Development Lengths
7.5 Serviceability Requirements
7.5.1 ***** Control
7.5.2 Deflections
7.6 Columns
7.6.1 Short Columns
7.6.2 Slender Columns
7.7 Slabs
7.8 Footings
7.9 Retaining Wall
7.10 Pre-stressed Concrete
8.0 Soil Mechanics and Foundation
8.1 Soil Properties
8.2 Soil Classification
8.3 Flow of Water in Soils
8.3.1 Permeability
8.3.2 Seepage
8.3.3 Effective and Purewater Pressure
8.4 Soil Strength
8.4.1 Shear Strength
8.4.2 Bearing Capacity
8.5 Compressibility of Soils
8.5.1 Elastic Settlement
8.5.2 Consolidation Settlement
8.6 Soil Improvement
8.6.1 Compaction
8.6.2 Soil Stabilization
8.7 Earth Pressures and Retaining Wall
8.8 Slope Stability Analysis
9.0 Design of Civil Engineering Structures and Systems
9.1 Transportation Engineering**
9.1.1 Highway and Urban Transportation Planning and Economics**
9.1.2 Driver, Vehicle, Traffic and Road Characteristics**
9.1.3 Highway Design
9.1.4 Traffic Engineering and Highway Operations**
9.1.5 Road and Pavement Design
9.2 Airport Engineering**
9.3 Ports and Harbors
9.4 Containment Structures (Tanks, soils, storage tanks)
9.5 Bridges
10.0 Construction and Management
10.1 Engineering Relations and Ethics**
10.2 Contracts & Specifications
10.3 Construction Project Organization
10.4 Planning and Scheduling (PERT/CPM)
10.5 Construction Estimates
10.6 Construction Methods & Operations
10.7 Construction Equipment Operations and Maintenance
Ang dami nyan! And a general average of 70% with no grades lower than 50% in any given subject must be obtained by the candidate to pass the exam. Buti ngayon mababa kaysa noong araw na 75%.


Kaya sa Civil Engineering (as an example), mas may advantage to have a tailor-made sheet for it in addition from the one provide at yung extra knowledge pa sa other fields na requirement sa board exam. That is another thing you need to find for yourself. Hanap kayo ng magaling na review center - for the TIPS he he. And look for old reviewers online, o kaya hardbound/softbound books sa Morayta at Recto, National Bookstore atbp. Kung gusto mong pumasa, better get every available resources at huwag mag-intay ng milagro!

Yung sa baba is for "CE" onl - may not be complete.

Civil Engineering All Formula book:




Bukod dyan, dito naman sa baba will cover the general subjects from the formulas above.
1. CPM-PERT : You do not have permission to view the full content of this post. Log in or register now. - You do not have permission to view the full content of this post. Log in or register now.
SOM : Strength of Materials
Theory of Structures
----------------------------------
2. RCC : Reinforced Concrete
-----------------------------------
3. Steel Structures
-----------------------------------
4. Soil Mechanics & Foundation Engineering
------------------------------------------------------------
5. Survey
----------------------------------
6. Fluid Mechanics & Hydraulic Machines
------------------------------------
7. Highway Engineering
Railway Engineering
----------------------------------------
8. Water Resources
-----------------------------------
9. Water Supply
------------------------------------------
10. Water and Wastewater quality



Downloads are here:



Kung may kulang dyan sa inyong present curriculum, kayo na lang yung magdagdag for additional input. Alam ninyo naman siguro yung curriculum ninyo he he - nasa transcript of records kung nakalimutan ninyo.


Visit this site for additional knowledge and backreading for your review. Might help.
You do not have permission to view the full content of this post. Log in or register now.
You do not have permission to view the full content of this post. Log in or register now.
You do not have permission to view the full content of this post. Log in or register now. - alisin ninyo yung "-"
You do not have permission to view the full content of this post. Log in or register now.

Ito yung sample questions for the board exams


Kung handa na kayo, test ninyo ang inyong sarili online:


Sa ibang field of engineering like ME, EE, ECE....ay may ibang requirements at formula sheets, pero sa general knowledge ay parehas lang silang lahat like General Information, Mathemathics and Science.
bat ayaw po ma download?
 
Hindi naman mahirap maghanap ng formula sheets kung yoon lang yung nais ninyo Ito lang yung gawin ninyo:
Go to libgen.is, type "Engineering Formulas" sa searchbox, then review the results to whatever branch of engineering it provides and download it or them. Easy!
 

Similar threads

Back
Top